soprano.calculate.nmr.utils#
Helper functions for NMR calculations and plotting
Functions
|
Calculate the distances between pairs of atoms. |
|
|
|
Filters pairs of indices based on a cutoff distance. |
|
Calculate the Gaussian broadening function. |
|
Generate a contour map based on the provided peaks and broadening parameters. |
|
Generate peaks for the NMR data. |
|
Get the labels for the atoms in the Atoms object. |
|
Compute the total energy of the system |
|
This is a vectorised version of the above function, which is much faster |
|
Get the dipolar couplings for a list of pairs of atoms. |
|
Get the J couplings for a list of pairs of atoms. |
|
|
|
Calculate the Lorentzian broadening function. |
|
Merge peaks that are identical. |
|
|
|
|
|
Process pairs of indices and update element indices. |
|
Sort the peaks in the order of increasing x and y values TODO: This doesn't work in some cases. |
|
Return a decorator that will apply matplotlib style sheets to a plot. |
|
Classes
|
Class to hold peak data. |
- class soprano.calculate.nmr.utils.Peak2D(x, y, xlabel, ylabel, correlation_strength=1, color='C0', idx_x=None, idx_y=None)[source]#
Bases:
object
Class to hold peak data. This is used to store the peak data for a correlation peak in a 2D NMR spectrum.
The data stored includes: - the peak position in x and y - the correlation strength - the x and y labels for the peak - the color of the peak - the index of the x and y labels in the list of all labels
- Parameters:
x (float)
y (float)
xlabel (str)
ylabel (str)
correlation_strength (float)
color (str)
idx_x (int | None)
idx_y (int | None)
- equivalent_to(other, xtol=0.005, ytol=0.005, corr_tol=0.1, ignore_correlation_strength=False)[source]#
Check if two peaks are equivalent. We compare the x and y coordinates and the correlation strength.
- Parameters:
other (Peak2D) – The other peak to compare to
xtol (float, optional) – The tolerance for the x coordinate. Defaults to 0.005.
ytol (float, optional) – The tolerance for the y coordinate. Defaults to 0.005.
corr_tol (float, optional) – The tolerance for the correlation strength. Defaults to 0.1.
- Returns:
True if the peaks are equivalent, False otherwise
- Return type:
bool
- soprano.calculate.nmr.utils.calculate_distances(pairs, atoms)[source]#
Calculate the distances between pairs of atoms.
- Parameters:
pairs (List[Tuple[int, int]]) – List of tuples representing pairs of atom indices.
atoms (Atoms) – Atoms object that provides the get_distance method.
- Returns:
Array of distances corresponding to the pairs.
- Return type:
np.ndarray
- soprano.calculate.nmr.utils.filter_pairs_by_distance(pairs, pairs_el_idx, pair_distances, rcut)[source]#
Filters pairs of indices based on a cutoff distance.
- Parameters:
pairs (List[Tuple[int, int]]) – List of tuples representing pairs of indices.
pairs_el_idx (List[Tuple[int, int]]) – List of tuples representing pairs of element indices.
pair_distances (np.ndarray) – Array of distances corresponding to the pairs.
rcut (float) – Cutoff distance for filtering pairs.
- Returns:
Filtered list of pairs.
Filtered list of element index pairs.
Filtered array of pair distances.
Unique sorted array of x indices.
Unique sorted array of y indices.
- Return type:
Tuple[List[Tuple[int, int]], List[Tuple[int, int]], np.ndarray, np.ndarray, np.ndarray]
- Raises:
ValueError – If no pairs are found after filtering by distance.
- soprano.calculate.nmr.utils.gaussian(X, x0, Y, y0, x_broadening, y_broadening)[source]#
Calculate the Gaussian broadening function.
where
and are the broadening factors in the x and y directions, respectively. These correspond to the standard deviation of the Gaussian function.- Parameters:
X (np.ndarray) – Array of x values.
x0 (float) – x-coordinate of the peak.
Y (np.ndarray) – Array of y values.
y0 (float) – y-coordinate of the peak.
x_broadening (float) – Broadening factor in the x direction.
y_broadening (float) – Broadening factor in the y direction.
- Returns:
Array of intensity values.
- Return type:
np.ndarray
- soprano.calculate.nmr.utils.generate_contour_map(peaks, grid_size=100, broadening='gaussian', x_broadening=1.0, y_broadening=1.0, xlims=None, ylims=None)[source]#
Generate a contour map based on the provided peaks and broadening parameters.
- Parameters:
peaks (List[Peak2D]) – List of Peak2D objects containing x, y coordinates and correlation strength.
grid_size (int, optional) – Size of the grid for the contour map. Default is 100.
broadening (str, optional) – Type of broadening function to use (‘lorentzian’ or ‘gaussian’). Default is ‘lorentzian’.
x_broadening (float, optional) – Broadening factor in the x direction. Default is 1.0.
y_broadening (float, optional) – Broadening factor in the y direction. Default is 1.0.
xlims (Optional[Tuple[float, float]], optional) – Limits for the x-axis. Default is None.
ylims (Optional[Tuple[float, float]], optional) – Limits for the y-axis. Default is None.
- Returns:
Meshgrid arrays X, Y and the intensity grid Z.
- Return type:
Tuple[np.ndarray, np.ndarray, np.ndarray]
- soprano.calculate.nmr.utils.generate_peaks(data, pairs, labels, markersizes, yaxis_order, xelement, yelement)[source]#
Generate peaks for the NMR data.
- Parameters:
data (List[float]) – The NMR data.
pairs (Iterable[Tuple[int, int]]) – Pairs of indices for the peaks.
labels (List[str]) – Labels for the peaks.
markersizes (Union[List[float], float]) – Marker sizes for the peaks.
yaxis_order (str) – Order of the y-axis.
xelement (str) – Element symbol for the x-axis.
yelement (str) – Element symbol for the y-axis.
- Returns:
List of generated peaks.
- Return type:
List[Peak2D]
- soprano.calculate.nmr.utils.get_atom_labels(atoms, logger=None)[source]#
Get the labels for the atoms in the Atoms object. If the labels are not present, they will be generated using the MagresViewLabels class.
- Parameters:
atoms (ase.Atoms) – Atoms object.
logger (Optional[logging.Logger], optional) – Logger object. Default is None.
- Returns:
Array of labels.
- Return type:
np.ndarray
- soprano.calculate.nmr.utils.get_energy(positions, positions_original, C, k)[source]#
Compute the total energy of the system
- soprano.calculate.nmr.utils.get_force_matrix(positions, positions_original, C=0.01, k=1e-05)[source]#
This is a vectorised version of the above function, which is much faster
- Parameters:
positions (np.array) – The y coordinates of the annotations
positions_original (np.array) – The original y coordinates of the annotations
C (float, optional) – The repulsive force constant between annotations, by default 0.01
k (float, optional) – The spring force constant for the spring holding the annotation to it’s original position, by default 0.00001
- soprano.calculate.nmr.utils.get_pair_dipolar_couplings(atoms, pairs, isotopes=None, unit='kHz')[source]#
Get the dipolar couplings for a list of pairs of atoms. For pairs where i == j, the dipolar coupling is set to zero.
- Parameters:
atoms (ASE Atoms object) – The atoms object that contains the atoms.
pairs (list of tuples) – List of pairs of atom indices.
isotopes (dict, optional)
unit (str)
- Returns:
dipolar_couplings – List of dipolar couplings for the pairs.
- Return type:
list of float
- soprano.calculate.nmr.utils.get_pair_j_couplings(atoms, pairs, isotopes=None, unit='Hz', tag='isc')[source]#
Get the J couplings for a list of pairs of atoms. For pairs where i == j, the J coupling is set to zero.
- Parameters:
atoms (ASE Atoms object) – The atoms object that contains the atoms.
pairs (list of tuples) – List of pairs of atom indices.
isotopes (dict, optional) – Dictionary of isotopes for the atoms.
unit (str, optional) – Unit of the J coupling. Default is ‘Hz’.
tag (str, optional) – Name of the J coupling component to return. Default is ‘isc’. Magres files usually contain isc, isc_spin, isc_fc, isc_orbital_p and isc_orbital_d.
- Returns:
j_couplings – List of J couplings for the pairs.
- Return type:
list of float
- soprano.calculate.nmr.utils.get_total_forces(positions, positions_original, C=0.01, k=1e-05)[source]#
- Parameters:
positions (np.array) – The y coordinates of the annotations
positions_original (np.array) – The original y coordinates of the annotations
C (float, optional) – The repulsive force constant between annotations, by default 0.01
k (float, optional) – The spring force constant for the spring holding the annotation to it’s original position, by default 0.00001
- soprano.calculate.nmr.utils.lorentzian(X, x0, Y, y0, x_broadening, y_broadening)[source]#
Calculate the Lorentzian broadening function.
where
and are the broadening factors in the x and y directions, respectively. These correspond to the half-width at half-maximum (HWHM) of the Lorentzian function.- Parameters:
X (np.ndarray) – Array of x values.
x0 (float) – x-coordinate of the peak.
Y (np.ndarray) – Array of y values.
y0 (float) – y-coordinate of the peak.
x_broadening (float) – Broadening factor in the x direction.
y_broadening (float) – Broadening factor in the y direction.
- Returns:
Array of intensity values.
- Return type:
np.ndarray
- soprano.calculate.nmr.utils.merge_peaks(peaks, xtol=1e-05, ytol=1e-05, corr_tol=1e-05, ignore_correlation_strength=False)[source]#
Merge peaks that are identical.
- Parameters:
peaks (Iterable[Peak2D]) – List of peaks to merge.
xtol (float) – Tolerance for x-axis comparison.
ytol (float) – Tolerance for y-axis comparison.
corr_tol (float) – Tolerance for correlation strength comparison.
ignore_correlation_strength (bool) – Whether to ignore correlation strength in comparison.
- Returns:
List of unique merged peaks.
- Return type:
List[Peak2D]
- soprano.calculate.nmr.utils.optimise_annotations(positions, max_iters=10000, C=0.01, k=1e-05, ftol=0.001)[source]#
- Parameters:
positions (list or np.array) – The x or y coordinates of the annotations to be optimised
max_iters (int, optional) – The maximum number of iterations to run for, by default 10000
C (float, optional) – The repulsive force constant between annotations, by default 0.01
k (float, optional) – The spring force constant for the spring holding the annotation to it’s original position, by default 0.00001
ftol (float, optional) – The tolerance for the forces, by default 1e-3. If all the net forces are below this value, the optimisation will stop even if the maximum number of iterations has not been reached.
- soprano.calculate.nmr.utils.process_pairs(idx_x, idx_y, pairs)[source]#
Process pairs of indices and update element indices.
- Parameters:
idx_x (np.ndarray) – Array of x element indices.
idx_y (np.ndarray) – Array of y element indices.
pairs (Optional[List[Tuple[int, int]]]) – List of tuples representing pairs of indices, or None.
- Returns:
List of pairs of indices.
List of pairs of element indices.
Updated array of x element indices.
Updated array of y element indices.
- Return type:
Tuple[List[Tuple[int, int]], List[Tuple[int, int]], np.ndarray, np.ndarray]
- soprano.calculate.nmr.utils.sort_peaks(peaks, priority='x', reverse=False)[source]#
Sort the peaks in the order of increasing x and y values TODO: This doesn’t work in some cases. Investigate why.
- soprano.calculate.nmr.utils.styled_plot(*style_sheets)[source]#
Return a decorator that will apply matplotlib style sheets to a plot.
style_sheets
is a base set of styles, which will be ignored ifno_base_style
is set in the decorated function arguments. The style will further be overwritten by any styles in thestyle
optional argument of the decorated function. :param style_sheets: Any matplotlibsupported definition of a style sheet. Can be a list of style of style sheets.